Skip to main content Site map

Introduction to Electrical Power Systems


Introduction to Electrical Power Systems

Hardback by El-Hawary, Mohamed E. (Dalhousie University)

Introduction to Electrical Power Systems

WAS £135.95   SAVE £27.19

£108.76

eBook available
ISBN:
9780470408636
Publication Date:
31 Oct 2008
Language:
English
Publisher:
John Wiley & Sons Inc
Imprint:
Wiley-IEEE Press
Pages:
408 pages
Format:
Hardback
For delivery:
New product available - 9781119489870
Introduction to Electrical Power Systems

Description

Adapted from an updated version of the author's classic Electric Power System Design and Analysis, with new material designed for the undergraduate student and professionals new to Power Engineering. The growing importance of renewable energy sources, control methods and mechanisms, and system restoration has created a need for a concise, comprehensive text that covers the concepts associated with electric power and energy systems. Introduction to Electric Power Systems fills that need, providing an up-to-date introduction to this dynamic field. The author begins with a discussion of the modern electric power system, centering on the technical aspects of power generation, transmission, distribution, and utilization. After providing an overview of electric power and machine theory fundamentals, he offers a practical treatment-focused on applications-of the major topics required for a solid background in the field, including synchronous machines, transformers, and electric motors. He also furnishes a unique look at activities related to power systems, such as power flow and control, stability, state estimation, and security assessment. A discussion of present and future directions of the electrical energy field rounds out the text. With its broad, up-to-date coverage, emphasis on applications, and integrated MATLAB scripts, Introduction to Electric Power Systems provides an ideal, practical introduction to the field-perfect for self-study or short-course work for professionals in related disciplines.

Contents

Preface. Chapter 1: INTRODUCTION. 1.1 A Brief History of Electric Power Systems. 1.2 The Structure of the Power System. 1.3 Outline of the Text. Chapter 2: BASICS OF ELECTRIC ENERGY SYSTEM THEORY. 2.1 Introduction. 2.2 Concepts of Power in Alternating Current Systems. 2.3 Three-Phase Systems. 2.4 The Per Unit System. 2.5 Electromagnetism and Electromechanical Energy Conversion. 2.6 Permeability and Magnetic Field Intensity. 2.7 Flux Linkages, Induced Voltages, Inductance, and Energy. 2.8 Hysteresis Loop. 2.9 Eddy Current and Core Losses. 2.10 Energy Flow Approach. 2.11 Multiply Excited Systems. 2.12 Doubly Excited Systems. 2.13 Salient-Pole Machines. 2.14 Round or Smooth Air-Gap Machines. 2.15 Machine-Type Classification. 2.16 P-Pole Machines. 2.17 Power System Representation. Problems. Chapter 3: POWER GENERATION AND THE SYNCHRONOUS MACHINE. 3.1 Introduction. 3.2 The Synchronous Machine: Preliminaries. 3.3 Synchronous Machine Fields. 3.4 A Simple Equivalent Circuit. 3.5 Principal Steady-State Characteristics. 3.6 Power-Angle Characteristics and the Infinite Bus Concept. 3.7 Accounting for Saliency. 3.8 Salient-Pole Machine Power Angle Characteristics. Problems. Chapter 4: THE TRANSFORMER. 4.1 Introduction. 4.2 General Theory of Transformer Operation. 4.3 Transformer Connections. Problems. Chapter 5: ELECTRIC POWER TRANSMISSION. 5.1 Introduction. 5.2 Electric Transmission Line Parameters. 5.3 Line Inductance. 5.4 Line Capacitance. 5.5 Two-Port Networks. 5.6 Transmission Line Models. Problems. Chapter 6: INDUCTION AND FRACTIONAL HORSEPOWER MOTORS. 6.1 Introduction. 6.2 Three-Phase Induction Motors. 6.3 Torque Relations. 6.4 Classification of Induction Motors. 6.5 Rotating Magnetic Fields in Single-Phase Induction Motors. 6.6 Equivalent Circuits for Single-Phase Induction Motors. 6.7 Power and Torque Relations. 6.8 Starting Single-Phase Induction Motors. 6.9 Single-Phase Induction Motor Types. Problems. Chapter 7: FAULTS AND PROTECTION OF ELECTRIC ENERGY SYSTEMS. 7.1 Introduction. 7.2 Transients during a Balanced Fault. 7.3 The Method of Symmetrical Components. 7.4 Sequence Networks. 7.5 Line-to-Ground Fault. 7.6 Double Line-to-Ground Fault. 7.7 Line-to-Line Fault. 7.8 The Balanced Three-Phase Fault. 7.9 System Protection, An Introduction. 7.10 Protective Relays. 7.11 Transformer Protection. 7.12 Transmission Line Protection. 7.13 Impedance-Based Protection Principles. 7.14 Computer Relaying. Problems. Chapter 8: THE ENERGY CONTROL CENTER. 8.1 Introduction 8.2 Overview of EMS Functions. 8.3 Power Flow Control 8.4 Power Flow 8.5 Stability Considerations 8.6 Power System State Estimation 8.7 Power System Security 8.8 Contingency Analysis 8.9 Optimal Preventive and Corrective Actions 8.10 Dynamic Security Analysis Chapter 9: THE PRESENT AND FUTURE OF ELECTRIC ENERGY SYSTEMS. 9.1 Introduction. 9.2 Challenges Facing the System. 9.3 Blackouts and their Impact. 9.4 Mitigating and Coping. REFERENCES. INDEX.

Back

University of Bolton logo